

Programa de Pós-Graduação em Geologia

Disciplina: Dinâmica Sedimentar

Semestre: 2010/2

Carga horária total: 30 Carga horária teórica: 30 Carga horária prática: 00

Créditos: 02

Área temática: Geo

Código da disciplina: 93524 Requisitos de matrícula:

## **EMENTA**

Discutem-se os elementos fundamentais para o reconhecimento, descrição e interpretação de estruturas e fácies sedimentares. É feita a integração dos elementos que fundamentam os estudos de sistemas deposicionais.

## CONTEÚDO PROGRAMÁTICO

Sedimentos e rochas sedimentares.

Sedimentos siliciclásticos, evaporíticos e carbonáticos. Características texturais dos sedimentos siliciclásticos. Classificação das rochas siliciclásticas.

Ciclo sedimentar.

Área fonte, área de transferência e área de acumulação. Intemperismo, erosão, transporte e deposição.

Fluxos e mecanismos de transporte de sedimentos.

Fluxos fluídos, fluxos fluídos unidirecionais, fluxos fluídos oscilatórios e combinados, fluxos gravitacionais. Regime de fluxo.

#### Contatos.

Tipos. Definição de camada/estrato/lâmina/conjunto de lâminas/conjunto de camadas.

Registro (evento) e hiato.

Sedimentação cíclica e episódica.

Fácies sedimentares.

Geometria Estruturas sedimentares. Fábrica. Paleocorrente. Conteúdo fossilífero. Descrição e interpretação.

Lei de Walther e sistemas deposicionais.

Associações de fácies e sequências de fácies. Elementos arquiteturais e superfícies limitantes. Análise faciológica e modelos deposicionais. Sistemas deposicionais e tratos de sistemas.



## **BIBLIOGRAFIA BÁSICA**

ALLEN, P. A. Earth surface processes. Oxford: Blackwell, 1997. 404 p.

BOGGS Jr., S. **Principles of sedimentology and stratigraphy**. New Jersey: Prentice Hall, 2001. 726 p.

COLLINSON, J. D.; THOMPSON, D. B. **Sedimentary structures.** London: Unwin Hyman, 1989. 207 p.

LEEDER, M. R. **Sedimentology, process and product.** London: Unwin Hyman, 1982. 344 p.

NORMARK, W. R.; POSAMENTIER, H.; MUTTI, E. Turbidite systems: state-of-the art and future. **Reviews of Geophysics**, Washington, DC, v. 31, n. 2, p. 91–116, may 1993.

PAIM, P. S. G.; FACCINI, U. F.; NETTO, R. G. (ed.). **Geometria, arquitetura e heterogeneidades de corpos sedimentares.** São Leopoldo: Unisinos, 2004. 239 p.

PROTHERO, D. R.; SCHWAB, F. **Sedimentary geology.** New York: W. H. Freeman, 1996. 575 p.

READING, H. G.; RICHARDS, M. Turbidite systems in deep-water basin margins classified by grain-size and feeder system. **American Association of Petroleum Geologists Bulletin**, Tulsa, Okla, v. 78, n. 5, p. 792–822, may 1994.

READING, H. G. (ed.). **Sedimentary environments:** processes, facies and stratigraphy. London: Blackwell, 1996. 688 p.

SELLEY, R. C. **Ancient sedimentary environment.** London: Chapman & Hall, 1996. 300 p.

#### **BIBLIOGRAFIA COMPLEMENTAR**

TUCKER, M. **The field description of sedimentary rocks.** London: Geological Society of London Handbook Series, 1985. 112 p.

WALKER, R. G.; JAMES, N. P. (ed.). **Facies models:** response to sea level change. St. John's: Geological Association of Canada, 1992. 409 p.

## **AVALIAÇÃO**

Seminários escritos e apresentações orais sobre tópicos selecionados do programa, preferencialmente relacionados ao tema de tese/dissertação do (a) aluno (a).



Programa de Pós-Graduação em Geologia

Disciplina: Estratigrafia de Sequências

Semestre: 2010/2

Carga horária: 90 horas Carga horária teórica: 30 Carga horária campo: 60

Créditos: 04

Área temática: Geo

Código da disciplina: 07504

Requisitos de matrícula: É necessário que o aluno disponha de conhecimento prévio ou curse

disciplina específica sobre sistemas deposicionais antes de se matricular nesta disciplina.

## **EMENTA**

A disciplina estuda o preenchimento de bacias sedimentares em termos de flutuações do nível de base, integrando conceitos estratigráficos e sedimentológicos. Apresenta os princípios fundamentais da Estratigrafia de Sequências sob uma perspectiva histórica de evolução dos conhecimentos. Insere-se na Linha de Pesquisa Estratigrafia e Evolução de Bacias, da Área de Concentração Geologia Sedimentar.

## CONTEÚDO PROGRAMÁTICO

- 1. Histórico
  - 1.1. Evolução dos conceitos até 1977
  - 1.2. O Advento da Sismoestratigrafia (1977).
  - 1.3. A formalização da Estratigrafia de seguências (1988 1990).
- 2. Conceitos fundamentais
- 2.1. Controles básicos e processos. Espaço de acomodação de sedimento. Suprimento sedimentar. Regressões normais e forçadas;
- 2.2. Sequências deposicionais. Parassequências. Conjuntos de parassequências. Tratos de sistemas. Sequências marginais marinhas rasas e profundas. Sequências deposicionais aluviais e desérticas; e
  - 2.3. Superfícies chaves: origem e características.
- 3. Exercícios práticos (sísmica, foto aérea, poços e campo) sobre reconhecimento e delimitação de parassequências e conjuntos de parassequências, superfícies co-planares, discordâncias, de inundação e de inundação máxima e sequências deposicionais.



## **BIBLIOGRAFIA**

BOGGS Jr., S. **Principles of Sedimentology and Stratigraphy**. Upper Saddle River: Pearson Education, 2006. 662 p.

CATUNEANU, O. **Principles of Sequence Stratigraphy**. Amsterdam: Elsevier, 2006. 375p.

COE, A. L. **The sedimentary record of sea-level change**. Cambridge: Cambridge University, 2005. 287 p.

EMERY, D.; MYERS, K.J. **Sequence stratigraphy**. Oxford: Blackwell, 1998. 297 p.

MIALL, A. D. The geology of stratigraphic sequences. Berlin: Springer, 1997. 433 p.

PAYTON, C. E. (ed.). **Seismic stratigraphy:** application to hydrocarbon exploration. Tulsa: AAPG, 1977. 516 p. Memoir 26.

POSAMENTIER, H. W.; ALLEN, G. P. **Siliciclastic sequence stratigraphy:** concepts and applications. Tulsa: SEPM, 1999. 210 p. Concepts in Sedimentology and Paleontology, 7.

RIBEIRO, H. J. S. (ed.). **Estratigrafia de sequências:** fundamentos e aplicações. São Leopoldo: UNISINOS, 2001. 428 p.

VAN WAGONER, J. C. et al. **Siliciclastic sequence stratigraphy in well logs, cores and outcrops**. Tulsa, Okla: AAPG, 1990. 55 p. Methods in Exploration Series, 7.

VAN WAGONER, J. C. et al. An overview of the fundamentals of sequence stratigraphy and key definitions. In: WILGUS, C.K. et al. (ed.). **Sea level changes:** an integrated approach. Tulsa: SEPM, 1988. p. 39-45. Special Publication, 42.

#### **AVALIAÇÃO**

A avaliação é efetuada através de seminários sobre temas teóricos e exercícios práticos (laboratório e campo) pertinentes a temática abordada na disciplina.



Programa de Pós-Graduação em Geologia

Disciplina: Icnologia Aplicada

Semestre: 2010/2

Carga horária: 60 Carga horária teórica: 30 Carga horária campo: 30

Créditos: 03

Área temática: Geo

Código da disciplina: 93519

Requisitos de matrícula: É necessário que o aluno curse a disciplina Icnologia (código

100928).

#### **EMENTA**

Análise integrada da icnologia e da sedimentologia dos depósitos portadores de traços fósseis, destacando os vínculos faciológicos da icnofauna e as assinaturas icnológicas específicas. Relações entre suítes de traços fósseis e superfícies estratigráficas e sua relevância em estudos estratigráficos de alta resolução. Articula-se com a linha de pesquisa Paleontologia Aplicada da Área de Concentração Geologia Sedimentar e destina-se a alunos que irão atuar nas áreas de icnologia ou que pretendem utilizar a icnologia como ferramenta para estratigrafia e análise de bacias, podendo também ser cursada por estudantes de outras áreas que necessitem incrementar seu embasamento teórico com temas icnológicos.

# CONTEÚDO PROGRAMÁTICO

Icnofábricas

Observação, identificação, classificação.

#### **Icnofácies**

Caracterização. Icnofácies seilacherianas. Paradigma das icnofácies. Icnofácies arquetípicas. Papel das icnofácies na geologia sedimentar. Recorrência de icnofácies e sua aplicação no estudo de sequências sedimentares. Distribuição orgânica no bento e estabelecimento de icnocenoses como modelos preditivos da ocorrência de icnofácies.

Aplicações da Icnologia em Paleoecologia, Sedimentologia e Estratigrafia

Processos deposicionais. Batimetria. Flutuações de salinidade. Delimitação de litofácies. Bioturbação como fator de incremento ou restrição da permo-porosidade das rochas. Icnofaunas residentes e icnofaunas de colonização. Icnologia de ambientes mixohalinos, de depósitos de tempestades, de carbonatos, de turbiditos, de paleossolos. Delimitação de parassequências e de sets de parassequências. Reconhecimento de superfícies estratigráficas. Avaliação de tratos de sistemas.

## **BIBLIOGRAFIA BÁSICA**

BROMLEY, R.G.; EKDALE, A. A. Composite ichnofabrics and tiering of burrows. **Geological Magazine**, London, v. 123, n. 1, p. 59-65, 1986.



BROMLEY, R. G. **Trace fossils;** biology, taphonomy and applications. 2nd ed. London: Chapman & Hall, 1996. 361 p.

BROMLEY, R. G.; PEMBERTON, S. G.; RAHMANI, R.A. A Cretaceous woodground: the Teredolites Ichnofacies. **Journal of Paleontology**, Tulsa, v. 58, n. 2, p. 488-498, mar. 1984.

BUATOIS, L. A.; MÁNGANO, M. G. The paleoenvironmental and paleoecological significance of the lacustrine Mermia ichnofacies: an archetypical subaqueous nonmarine trace fossil assemblage. **Ichnos**, Amsterdam, v. 4, p. 1-12, aug. 1995.

BUATOIS, L. A. et al. Colonization of brackish-water systems through time: evidence from the trace-fossil record. **Palaios**, Tulsa, v. 20, n. 4, p. 321-347, aug. 2005.

BUATOIS, L. A.; MÁNGANO, M. G.; ACEÑOLASA, F. G. **Trazas fósiles**. Trelew: Museo Egidio Ferruglio, 2002. 382 p. Publicación Especial 1.

CRIMES, T. P. Changes in the trace fossil biota across the Proterozoic: phanerozoic boundary. **Journal of Geological Society**, London, v. 149, p. 637-646. aug. 1992.

EKDALE, A. A. Pitfalls of paleobathymetric interpratations based on trace fossil assemblages. **Palaios**, Tulsa, v. 3, p. 464-472. oct. 1988.

FREY, R. W.; PEMBERTON, S. G. The Psilonichnus ichnocoenose, and its relationship to adjacent marine and nonmarine ichnocoenoses along the Georgia coast. **Bulletin of Canadian Petroleum Geology**, Calgary, v. 35, n. 3, p. 333-357. sept. 1987.

FREY, R. W. Trace fossils and hummocky cross-stratification: upper Cretaceous of Utah. **Palaios**, Tulsa, v. 5, n. 3, p. 203-218, june 1990.

#### **BIBLIOGRAFIA COMPLEMENTAR**

GINGRAS, M. K. et al. The ichnology of modern and Pleistocene brackish-water deposits at Willapa Bay. **Palaios**, Washington, v. 14, n. 4, p. 352-374, aug. 1999.

NETTO, R. G. Icnologia e estratigrafia de seqüências. In: SEVERIANO RIBEIRO, H.J.P. (ed.). **Estratigrafia de seqüências**: fundamentos e aplicações. São Leopoldo: Unisinos, 2001. p. 219-259.

PEMBERTON, S. G.; FREY, R. W. The Glossifungites Ichnofacies: modern examples from the Georgia coast, U.S.A. In: CURRAN, H.A. (ed.). **Biogenic structures:** their use in interpreting depositional environments. Tulsa: Society of Economic Palentologists and Mineralogists, 1985. p. 237-259, Special Publication, 5.



PEMBERTON, S. G. **Applications of Ichnology to petroleum exploration**. A core workshop. Society of Economic Paleontologists and Mineralogists Core Workshop, 17, 1992. 429 p.

PEMBERTON, S. G.; MACEACHERN, J. A.; BUATOIS, L. A. Criterios icnológicos para el reconocimiento y la interpretación de discontinuidades erosivas. **Boletin de la Sociedad Venezoelana de Geólogos**, Caracas, v. 22, n. 1, p. 7-32, 1997.

PEMBERTON, S. G., MACEACHERN, J. A., FREY, R.W. Trace fossils facies model: environmental and allostratigraphic significance. In: WALKER, R.G.; JAMES, N.P. (ed.). **Facies models**: response to sea level change. St. John's: Geological Association of Canada, 1992. p. 47-72.

PEMBERTON, S. G. et al. **Ichnology & Sedimentology of shallow to marginal marine systems**. St. Jonh's: Geological Association of Canada, 2001. 343 p. Short Course Notes 15.

TAYLOR, A.; GOLDRING, R. **Description and analysis of bioturbation and ichnofabric**. Journal of Geological Society of London, 150, 1993. p. 141-148.

TAYLOR, A. M.; GAWTHORPE, R. L. Application of sequence stratigraphy and trace fossil analysis to reservoir description: examples from the Jurassic of the North Sea. In: PARKER, J.R. (ed.). **Petroleum geology of Northwest Europe:** proceedings of the 4th Conference. Geological Society of London, 1993. p. 317-335.

WETZEL, A. Ecologic interpretation of deep-sea trace fossil communities. **Palaeogeography, Palaeoclimatology, Palaeoecology**, Amsterdam, v. 85, p. 47-69, 1991.

## **AVALIAÇÃO**

Atividade prática de campo.



Programa de Pós-Graduação em Geologia

Disciplina: Modelagem e Modelos Geológicos e Geofísicos

Semestre: 2010/2

Carga horária: 60 Carga horária teórica: 20 Carga horária prática: 40

Créditos: 04

Área temática: Geo

Código da disciplina: 100934

Requisitos de matrícula:

#### **EMENTA**

A disciplina é voltada para a discussão conceitual de técnicas de modelagem e de modelos geológicos e geofísicos em diferentes escalas. Enfatizar-se-á a comparação entre modelos obtidos a partir de dados de superfície e subsuperfície, diretos e indiretos, em especial aqueles obtidos por sensoriamento remoto.

## CONTEÚDO PROGRAMÁTICO

- 1. Tópicos conceituais sobre modelagem e modelos geológicos e geofísicos.
- 2. Atividades de interpretação de perfis de poços.
- 3. Atividades de correlação rocha-perfil.
- 4. Atividades de correlação estratigráfica.
- 5. Organização de banco de dados oriundos da interpretação de perfis.
- 6. Elaboração de modelo(s) geológico(s).

#### **BIBLIOGRAFIA BÁSICA**

ALBERTÃO, G.A. et al. 3D Geological modeling in a turbidite system with complex stratigraphic-structural framework: an example from Campos Basin, Brazil. In: ANNUAL TECHNICAL CONFERENCE AND EXHIBITION, 2005, Dallas. **Proceedings...** Dallas: Society of Petroleum Engineers, 2005. p. 1015-1024.

BRUN, J.P.; GUENNOC, P.; VAIRON, J. Cadomian tectonics in northern Brittany: a contribution of 3D crustal-scale modeling. **Tectonphysics**, Amsterdam, v. 33, n. 1-2, p. 229-246, feb. 2001.

CORREA, F. S. **Caracterização de zonas de falhas:** exemplo de afloramento na Bacia de Sergipe-Alagoas. 2002. 148 f. Dissertação (Mestrado em Ciências e Engenharia do Petróleo) - Instituto de Geociências, Universidade Estadual de Campinas, São Paulo, SP, 2002.

CROSS, T. A. **Quantitative Dynamic Stratigraphy**. New Jersey: Prentice-Hall, 1990. 625p.



EBERLI, G. P. et al. Testing a seismic interpretation of Great Bahamas Bank with a computer simulation. **AAPG Bulletin**, Tulsa, v. 78, n. 6, p. 981-1004, june 1994.

GOLEBY, B. R. et al. Preliminary 3D geological model of the Kalgoorlie region, Yilgarn Craton, Western Australia, based on deep seismic-reflection and potential-field data. **Australian Journal of Earth Sciences**, Melbourne, v. 49, n. 6, p. 917-933, 2002.

JERVEY, M. T. Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. In: WILGUS, C. K. et al. **Sea-level changes:** an integrated approach. Houston: SEPM, 1988. p. 47-69, Special Publication n. 42.

JESSELL, M. Three-dimensional geological modelling of potential-field data. **Computers and Geosciences**, Elmsford v. 27, n. 4, p. 455-465, may 2001.

LAVINA, E.L.C. O século XX e as rupturas entre o real científico e o senso comum. **Filosofia Unisinos**, São Leopoldo, v. 5, n. 8, p. 123-137, jan./jun. 2004.

#### **BIBLIOGRAFIA COMPLEMENTAR**

LAVINA, E. L. C. A Geologia e o processo histórico (ou, sobre como se constrói um passado a marteladas). **Gæa**, São Leopoldo, v. 2, n. 1, p. 29-39, 2006.

LAVORANTE, L. P. **Técnicas de modelagem 3D aplicadas a dados paleobatimétricos das bacias de Santos e Campos e à simulação deformacional de objetos geológicos.** 2005. 211 f. Dissertação (Mestrado em Geociências) - Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, São Paulo, SP, 2005.

MALLET, J.F. **Geomodeling**. Oxford: Oxford University, 2002. 599p.

MARTELET, G. et al. Integrated 3D geophysical and geological modelling of the Hercynian suture zone in the Champtoceaux area (south Brittany, France). **Tectonophysics**, Amsterdam, v. 382, n. 1-2, p. 117-128, apr. 2004.

NORDLUND, U. Formalising geological knowledge: with an example of modeling stratigraphy using fuzzy logic. **Journal of Sedimentary Research**, Tulsa, v. 66, n. 4, p. 689-698, 1996.

ROSEMBLUETH, A.; WEINER, N. The role of models in science. **Philosophy of Science**, Irvine, v. 12, n. 4, p. 316-321, oct. 1945.

SCHUMM, S. A. **To interpret the Earth:** ten ways to be wrong. Cambridge: Cambridge University, 1991. 133 p.

VAIL, P. R. Seismic stratigraphy interpretation procedure. In: BALLY, A. W. **Atlas of Seismic Stratigraphy**. Tulsa: Amer Assn of Petroleum Geologists, 1988. p. 1-10

#### **AVALIAÇÃO**

A avaliação se dará através de seminários e exercícios em aula.



Programa de Pós-Graduação em Geologia

Disciplina: Princípios de Sensoriamento Remoto e Sistema de Informações Geográficas

Semestre: 2010/2

Carga horária total: 60 Carga horária teórica: 60 Carga horária prática: 00

Créditos: 04

Área temática: Geo

Código da disciplina: 100932

Requisitos de matrícula:

#### **EMENTA**

A disciplina tem caráter instrumental, fornecendo conceitos básicos de sensoriamento remoto e sistema de informações geográficas, os quais são complementados por aplicações práticas dirigidas ao reconhecimento, caracterização e análise de fenômenos geológicos superficiais e subterrâneos.

## CONTEÚDO PROGRAMÁTICO

- 1. Estruturas de dados espaciais em ambiente SIG.
- 2. Visualização, manipulação, conversão de formatos e vinculação de dados espaciais.
- 3. Georreferenciamento e correção geométrica de produtos SIG.
- 4. Operações com tabelas e visualização espacial de atributos.
- 5. Modelos digitais.

Interpolação e geração de modelos digitais do terreno.

Geração de mapas de declive, seções transversais e diagramas 3-D.

Filtragens em modelos digitais.

Funções de propagação e modelos dinâmicos.

6. Análise espacial.

Operações de cruzamento e álgebra de mapas.

Operações de vizinhança e conectividade.

Correlação espacial e análise de padrões.

Funções e "scripts".

- 7. Princípios físicos do sensoriamento remoto, espectro eletromagnético, correção radiométrica, estimativas de albedo, refletividade e emissividade.
- 8. Satélites, sensores ativos e passivos, resolução de imagens orbitais, resposta espectral de alvos naturais.
- 9. Processamento de imagens orbitais.

Visualização de imagens e composições coloridas.

Histogramas e aumento de contraste.

Filtragens e fusão de imagens.

Operações multibanda.

Classificação de imagens.

- 10. Integração de dados espaciais.
- 11. Elaboração de mapas geológicos em ambiente SIG/SR.



12. Modelagem de processos geológicos superficiais e subterrâneos em ambiente.SIG/SR.

## **BIBLIOGRAFIA BÁSICA**

LILLSEAND, T. M.; KIEFER, R. K. **Remote Sensing and Image Interpretation**. Hoboken: Wiley & Sons, 1994.

RICHARDS, J. A. **Remote Sensing:** digital image analysis. Berlin: Springer – Verlag, 1993.

ARONOFF, S. **Geographic Information Systems:** a management perspective. Ottawa: WDL, 1993.

CRÓSTA, A. P. **Processamento Digital de Imagens de Sensoriamento Remoto**. Campinas: IG-UNICAMP, 1992. 170 p.

DRURY, S. A. **Image Interpretation in Geology**. Londres: Chapmann & Hall, 1993. 283 p.

## **AVALIAÇÃO**

A avaliação se dará através de seminários e trabalhos abordando estudos de casos.



Programa de Pós-Graduação em Geologia

Disciplina: Seminário Final de Doutorado

Semestre: 2010/2

Carga horária: 45 Carga horária teórica: 45 Carga horária campo: 00

Créditos: 03

Área temática: Geo

Código da disciplina: 93573

Requisitos de matrícula:

## **EMENTA**

Disciplina que busca favorecer ao aluno a apresentação da tese de doutorado frente ao Colegiado Geral do Programa, de modo a garantir-lhe uma oportunidade de solucionar problemas e realizar modificações favoráveis ao seu trabalho.

## CONTEÚDO PROGRAMÁTICO

Variável, de acordo com a temática do seminário de cada aluno.

#### **BIBLIOGRAFIA BÁSICA**

Variável, de acordo com a temática do seminário de cada aluno.

#### **BIBLIOGRAFIA COMPLEMENTAR**

Variável de acordo com a temática de estudo do aluno.

## **AVALIAÇÃO**

Apresentação de trabalhos.



Programa de Pós-Graduação em Geologia

Disciplina: Seminário Inicial de Doutorado

Semestre: 2010/2

Carga horária: 45 Carga horária teórica: 45 Carga horária campo: 00

Créditos: 03

Área temática: Geo

Código da disciplina: 100968

Requisitos de matrícula:

## **EMENTA**

Disciplina que busca favorecer ao aluno a apresentação da proposta de tese e a discussão do conhecimento atual no tema escolhido, de modo a gerar bases sólidas que sustentem o trabalho de pesquisa a ser desenvolvido.

## CONTEÚDO PROGRAMÁTICO

Variável, de acordo com a temática do seminário de cada aluno.

## **BIBLIOGRAFIA BÁSICA**

Variável, de acordo com a temática do seminário de cada aluno.

#### **BIBLIOGRAFIA COMPLEMENTAR**

Variável de acordo com a temática de estudo do aluno.

## **AVALIAÇÃO**

Apresentação de trabalhos.



Programa de Pós-Graduação em Geologia

Disciplina: Sistema Terra

Semestre: 2010/2

Carga horária total: 30 Carga horária teórica: 30 Carga horária prática: 00

Créditos: 02

Área temática: Geo

Código da disciplina: 93532 Requisitos de matrícula:

## **EMENTA**

A disciplina trata dos princípios gerais da Geologia e do funcionamento integrado do Sistema Terra, tendo a Tectônica de Placas como paradigma fundamental da ciência geológica.

# CONTEÚDO PROGRAMÁTICO

Terra.

Origem. Diferenciação.

Sistema Terra.

Funcionamento, Dinâmica interna, Dinâmica externa,

Tectônica de placas.

Paradigma unificador.

Minerais e rochas.

Clima e ciclo hidrológico.

Sedimentação e rochas sedimentares.

Magmatismo e rochas ígneas.

Metamorfismo e rochas metamórficas.

Deformações das rochas.

Dobras. Falhas.

Recursos naturais.

Minerais metálicos e industriais e energéticos (urânio, petróleo e carvão). Recursos hídricos e qualidade de águas.

Tempo geológico.



Geologia da América do Sul e do Rio Grande do Sul.

Paleontologia, fósseis e origem da vida.

Meio ambiente, mudança global e impactos humanos na Terra.

#### **BIBLIOGRAFIA BÁSICA**

BOTKIN, D. B.; KELLER, E. A. **Environmental science:** earth as a living planet. New York: John Wiley, 2003. 668 p.

HAMBLIN, W. K.; CHRISTIANSEN, E. H. **Earth's dynamic systems**. New Jersey: Prentice Hall, 1995. 710 p.

PRESS, F. et al. **Para entender a Terra.** Porto Alegre: Bookman, 2006. 656 p.

MURCK, B. W.; SKINNER, B. J.; PORTER, S. C. **Environmental geology.** New York: John Wiley, 1996. 535 p.

TUCKER, M. E. **Sedimentary petrology:** an introduction to the origin of sedimentary rocks. Oxford: Blackwell, 1991. 260 p.

WINTER, J. D. **An introduction to igneous and metamorphic petrology.** New Jersey: Prentice Hall, 2001. 697 p.

#### **AVALIAÇÃO**

A avaliação será feita em função do relatório da aula de campo, no qual o aluno deverá integrar descrições de afloramentos e amostras de rocha, com dados obtidos em bibliografia e escrever um texto coerente em forma de artigo técnico, descrevendo a evolução geológica da área visitada.



Programa de Pós-Graduação em Geologia

Disciplina: Sistemas deposicionais clásticos terrígenos

Semestre: 2010/2

Carga horária total: 90 Carga horária teórica: 30 Carga horária campo: 60

Créditos: 04

Área temática: Geo

Código da disciplina: 06644 Requisitos de matrícula:

#### **EMENTA**

A disciplina capacita para a compreensão dos diversos processos sedimentares atuantes nos sistemas deposicionais que compõem a paisagem atual, desde os sistemas continentais até o marinho profundo.

## CONTEÚDO PROGRAMÁTICO

Sistemas deposicionais.

Processos físicos e produtos. Arquitetura de corpos sedimentares.

Sistemas continentais.

Aluviais (leques, leques deltáicos e sistemas fluviais). Desértico. Lacustre e glacial.

Sistemas transacionais.

Costas dominadas por ondas. Costas dominadas por marés. Shoreface system.

Sistema marinho raso.

Dominado por ondas. Dominado por marés. Sistemas mistos.

Sistema marinho profundo.

Leques submarinos e sistemas turbidíticos.

#### **BIBLIOGRAFIA BÁSICA**

COLLINSON, J. D.; THOMPSON, D. B. **Sedimentary structures.** London: Unwin Hyman, 1989. 207 p.

GALOWAY, W. E.; HOBDAY, D. K. **Terrigenous clastic depositional systems.** New York: Springer, 1983. 423 p.

NORMARK, W. R.; PIPER, D. J. W. Initiation processes and flow evolution of turbidity currents: implications for the depositional record. In: OSBORNE, R. H. (ed.). **From** 



**shoreline to abyss:** contributions in marine geology in honor of Francis Parker Shepard. Tulsa: Society for Sedimentary Geology, 1991. Special publication, p. 207-230.

NORMARK, W. R.; POSAMENTIER, H.; MUTTI, E. Turbidite systems: state-of-the art and future. **Reviews of Geophysics**, Washington, v. 31, n. 2, p. 91–116, 1993.

READING, H. G.; RICHARDS, M. Turbidite systems in deep-water basin margins classified by grain-size and feeder system. **American Association of Petroleum Geologists Bulletim**, Tulsa, v. 78, n. 5, p. 792–822, 1994.

READING, H. G. (ed.). **Sedimentary environments:** processes, facies and stratigraphy. London: Blackwell, 1996. 688 p.

READING, H. G. Sedimentary environments and facies. London: Blackwell, 1981. 569 p.

SCHOLLE, P. A.; SPEARING, D. **Sandstone depositional environments.** Wisconsin: American Association of Petroleum Geologists Memoir, 1982. 410 p.

SELLEY, R. C. **Ancient sedimentary environment.** London: Chapman & Hall, 1996. 300 p.

STOW, D. A. V.; MAYALL, M. Deep-water sedimentary systems: new models for the 21st century. **Marine and Petroleum Geology**, London, v. 17, n. 2, p. 125–135, feb. 2000.

#### **BIBLIOGRAFIA COMPLEMENTAR**

STOW, D. A. V.; READING, H. G.; COLLINSON, J. D. Deep seas. In: READING, H.G. (ed.). **Sedimentary environments:** processes, facies and stratigraphy. 3. ed. Oxford: Blackwel, 1996. p. 395–453.

WALKER, R.G.; JAMES, N.P. (ed.). **Facies models.** Response to sea level change. St. John's: Geological Association of Canada, 1992. 409 p.

#### **AVALIAÇÃO**

Seminário e prova.



Programa de Pós-Graduação em Geologia

Disciplina: Tópicos Especiais em Paleontologia Aplicada: Palinofácies e fácies orgânicas

Semestre: 2010/2

Carga horária: 30 Carga horária teórica: 30 Carga horária prática: 00

Créditos: 02

Área temática: Geo

Código da disciplina: 93531

Requisitos de matrícula:

#### **EMENTA**

Classificação e caracterização dos componentes orgânicos. Os grupos do querogênio (fitoclasto, palinomorfo e matéria orgânica amorfa). Correlação entre os parâmetros ópticos e geoquímicos. Aplicação de estudos de palinofácies e fácies orgânica na caracterização de rochas geradoras de petróleo, na determinação do potencial de geração de hidrocarbonetos, na caracterização de paleoambientes e paleossalinidade.

## CONTEÚDO PROGRAMÁTICO

## A matéria orgânica sedimentar

Palinofácies e Fácies Orgânica

## A natureza da matéria orgânica nos sedimentos

Tipos de matéria orgânica

Querogênio: definição e classificação

## Produção de matéria orgânica

Produtividade primária Carbono orgânico

#### Degradação biológica

Fermentação

Degradação óxica

Nitrato redução

Sulfato redução

Metanogênese

# A abundância de matéria orgânica nos sedimentos: carbono orgânico total (COT), equivalência hidrodinâmica e diluição

Carbono Orgânico Total (COT)

COT e a granulometria do sedimento

Acumulação de matéria orgânica

#### Preservação de matéria orgânica

## Os grupos de componentes orgânicos do querogênio



#### Classificação:

#### **Grupo Fitoclasto:**

Origem e natureza Distribuição

## **Grupo Palinomorfo:**

Origem e natureza Distribuição

Subgrupos: Esporomorfos Fitoplâncton Zooplâncton

## Grupo da Matéria Orgânica Amorfa

Origem Distribuição

## Classificação palinológica do querogênio

## Caracterização geoquímica e classificação da matéria orgânica

Análise elementar Pirólise Rock-Eval Tipos de querogênio Fácies orgânica

Correlação com dados ópticos

Caracterização de rochas geradoras e reservatórios de petróleo

Determinação do potencial de geração

Determinação de paleoambientes deposicionais e paleossalinidade

Palinofácies no contexto de sequência estratigráfica

Variação da assembléia do querogênio e a determinação de paleoambiente deposicional e paleossalinidade

variações eustáticas através dos parâmetros de palinofácies rocha geradora de petróleo

Análise de palinofácies estratégia de amostragem controles litológicos e granulométricos padronização

medidas de frequência numérica utilizadas nos estudos de palinofácies percentagem de dados e razões de palinofácies representação gráfica

#### **BIBLIOGRAFIA BÁSICA**

COMBAZ, A. LesPalynofacies. **Revue de Micropaléontologie**, Paris, v. 7, n. 3, p. 205-218, 1964.

MENDONÇA FILHO, J. G. Aplicação de estudos palinofácies e fácies orgânicas em rochas do Paleozóico da Bacia do Paraná, sul do Brasil. 1999. 388 f. Tese (Doutorado em Geologia) - Programa de Pós-Graduação em Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 1999.

MENDONÇA FILHO, J. G. et al. Palinofácies. In: CARVALHO, I. S. (ed.). **Paleontologia.** Rio de Janeiro: Interciência, 2010. p. 379-413.



TRAVERSE, A. **Sedimentation of organic particles**. Cambridge, England: Cambridge University, 1994. 64p.

Tyson R.V. Palynofacies Analysis. In: JENKINS, D.J. (ed.). **Applied Micropaleontology.** Dordrecht: Kluwer Academic, 1993. p. 153-191.

TYSON, R.V. **Sedimentary organic matter**: organic fácies and palynofacies. London: Chapman & Hall, 1995. 615p.

## **AVALIAÇÃO**

A avaliação se dará através de exercícios em sala de aula abordando estudos de casos.